Code: 20CS3601

III B.Tech - II Semester - Regular Examinations - JUNE 2023

COMPILER DESIGN (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Discuss the phases of a compiler indicating	L2	CO1	10 M				
		the inputs and outputs of each phase in							
		translating the statement " $A = P + R * 45$ ".							
	b)	Describe the role of lexical analysis in	L2	CO1	4 M				
		compiler design.							
	OR								
2	a)	Discuss about the input buffering scheme in	L2	CO1	10 M				
		lexical analyzer.							
	b)	Describe specification and recognition of	L2	CO1	4 M				
		tokens.							
		UNIT-II							
3	a)	Calculate FIRST and FOLLOW for the	L3	CO2	7 M				
		following grammar:							
		$E \rightarrow E + T/T$							
		T-> T*F/F							
		F-> (E)/id							

	b)	Explain the error recovery in predictive	L3	CO2	7 M			
		parsing.						
OR								
4	a)	i. Differentiate Top Down Parser And	L2	CO2	4 M			
		Bottom Up Parser? Give example for						
		each.						
		ii. Describe a context free grammar?			3 M			
	b)	i. Sketch syntax tree for the expression	L3	CO2	4 M			
		a=b*-c+b*-c.						
		ii. Construct the algorithm for FIRST and			3 M			
		FOLLOW in parser.						
UNIT-III								
5	a)	Consider the following grammar:	L3	CO3	7 M			
		E-> E+E						
		E-> E*E						
		E->id						
		Construct shift reduce parsing of the input						
		string " $id_1+id_2+id_3$ ".						
	b)	i. Explain why SLR and LALR are more	L4	CO5	4 M			
		economical to construct than canonical						
		LR(CLR)?						
		ii. Explain what is meant by goto function			3 M			
		in LR parser? Give an example						
	OR							
6	a)	Consider the following grammar.	L3	CO3	10 M			
		$S \rightarrow AS / b$, $A \rightarrow SA / a$						
		Construct the SLR parse table for the						

		grammar. Show the actions of the parser for					
		the input string <i>abab</i> .					
	b)	(i) Compare the types of LR parsers.	L4	CO5	2 M		
		(ii) Explain what is LR(k) parsing?			2 M		
UNIT-IV							
7	a)	Construct CLR Parsing table for the given	L3	CO3	7 M		
		grammar: $S \rightarrow CC$, $C \rightarrow aC/d$					
	b)	Construct Three Address Code for the	L3	CO4	7 M		
		following expression:					
		(a * b) + (c + d) - (a + b + c + d)					
		OR					
8	a)	Show the following grammar is LALR(1)	L3	CO3	7 M		
		$S \rightarrow Aa / bAc / dc / bda$					
		$A \rightarrow d$					
	b)	Explain the different storage allocation	L3	CO4	7 M		
		strategies.					
		UNIT-V					
9	a)	What is DAG and flow graph? Explain their	L3	CO4	7 M		
		role in compilation process.					
	b)	Explain the main issues in code generation.	L3	CO4	7 M		
OR							
10	a)	Explain various machine independent code	L3	CO4	7 M		
		optimization techniques.					
	b)	Explain various machine dependent code	L3	CO4	7 M		
		optimization techniques.					